Direct integrals and spectral averaging

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Averaging and the Krein Spectral Shift

We provide a new proof of a theorem of Birman and Solomyak that if A(s) = A0+ sB with B ≥ 0 trace class and dμs(·) = Tr(BEA(s)(·)B), then ∫ 1 0 [dμs(λ)] ds = ξ(λ)dλ where ξ is the Krein spectral shift from A(0) to A(1). Our main point is that this is a simple consequence of the formula: d ds Tr(f(A(s)) = Tr(Bf ′(A(s))). Let A and C = A+B be bounded self-adjoint operators and suppose that B ≥ 0 ...

متن کامل

Multiple Operator Integrals and Spectral Shift

For a large class of admissible functions f : R 7→ C, the operator derivatives dj dxj f(H0 + xV ), where H0 and V are self-adjoint operators on a separable Hilbert space H, exist and can be represented as multiple operator integrals [1, 14]. Let M be a semi-finite von Neumann algebra acting on H and τ a semi-finite normal faithful trace on M. For H0 = H ∗ 0 affiliated with M and V = V ∗ in the ...

متن کامل

Spectral averaging techniques for Jacobi matrices

Spectral averaging techniques for one-dimensional discrete Schrödinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under ...

متن کامل

Sl2(r), Exponential Herglotz Representations, and Spectral Averaging

We revisit the concept of spectral averaging and point out its origin in connection with one-parameter subgroups of SL2(R) and the corresponding Möbius transformations. In particular, we identify exponential Herglotz representations as the basic ingredient for the absolute continuity of average spectral measures with respect to Lebesgue measure and the associated spectral shift function as the ...

متن کامل

Direct Evaluation of Hypersingular Galerkin Surface Integrals

A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Operator Theory

سال: 2013

ISSN: 0379-4024,1841-7744

DOI: 10.7900/jot.2010nov10.1918